ISLAMIC UNIVERSITYOF SCIENCE & TECHNOLOGY DEPARMENT OF CHEMISTRY

M Sc. (3rdSemester) (Mid.term)

Course Title: Chemical Thermodynamics and Solid State Chemistry Roll No:

(PCH-CC-303)

Max. Marks: 30 Time: 40mi

- 1. For isothermal expansion of an ideal gas:
 - a) $\Delta U = 0$
 - b) $dq_{rev} = -dw$
 - c) $dS = nR \ln \frac{V_2}{V_1}$
 - d) All of the above
- 2. If T and V are variables, then ΔS of a system is given by:
 - a) $\Delta S = C_V \ln T_2 / T_1 + R \ln V_2 / V_1$
 - b) $\Delta S = C_V \ln T_1 / T_2 + R \ln V_2 / V_1$
 - c) $\Delta S = C_n \ln T_2 / T_1 + R \ln V_2 / V_1$
 - d) $\Delta S = C_V \ln T_1 / T_2 + R \ln V_1 / V_2$
- 3. Match the following:
 - (1) $\Delta H + T \left[\frac{\partial (\Delta G)}{\partial T} \right]_{P} (A) \frac{-\Delta H}{T^{2}}$
 - (2) $\Delta H^0 + \int_0^T \Delta C_P dT$ (B) ΔV
 - $_{(3)}\,[\frac{\partial(\Delta G/T)}{\partial P}]_{P}$
- (C) $^{\Delta H_T}$
- $(4) \left[\frac{\partial (\Delta G)}{\partial P} \right]_T$
- (D) ΔG
- a) 1-D, 2-A, 3-B, 4-C
- b) 1-D, 2-C, 3-A, 4-B
- c) 1-C, 2-B, 3-D, 4-A
- d) 1-C, 2-D, 3-B, 4-A
- 4. The expression for the mixture of idea gas is:

 $\Delta S = \sum_{n} (C_{p} \ln T - R \ln \chi - R \ln p + C')$

- b) $\Delta S = (C_p \ln T R \ln \chi R \ln p + C')$
- c) $\Delta S = \sum_{n} (C_{v} \ln T R \ln \chi R \ln p + C')$
- d) $\Delta S = \sum_{n} (C_{p} \ln T R \ln \chi)$
- 5. One mole of ${\cal O}_2$ is mixed with nine moles of nitrogen at 298 K, then:
 - (I) Molar entropy of mixing
 - (II) Entropy of mixing of one mole
 - (III) Molar entropy of mixing of 9 moles of oxygen is mixed with one mole of nitrogen, is:
 - a) Same in all cases

- b) Different in all cases
- c) Different in (I) and same in (II) and (III)
- d) None of the above
- 6. Work function and Gibbs free energy relations are:

I.
$$-\Delta A = w$$

- II. $\Delta A = w$
- III. $-\Delta G = w p\Delta V$
- IV. $\Delta G = w + p\Delta V$
 - a) II and III
 - b) I and III
 - c) II and IV
 - d) None
- 7. The following relations are correct for a closed system with special conditions:
 - a) dG = -SdT

b)
$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S$$

- c) $\Delta G = RT \ln P_2 / P_1$
- d) All of the above
- 8. Which of the following is partial molar property?

a)
$$\left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_1,n_2,\dots,n_2}$$

- b) $\left(\frac{\partial H}{\partial n_1}\right)_{T,P,n_1,n_2,\dots}$
- c) $\left(\frac{\partial E}{\partial n_1}\right)_{T,P,n_1,n_2,\dots,n_n}$
- d) All of the above
- 9. Partial molar property of work function is related as:
 - a) $A_{i,m} = U_{i,m} TS_{i,m}$
 - b) $A_{im} = H_{im} TS_{im}$
 - c) $A_{i,m} = G_{i,m} TS_{i,m}$
 - d) None
- 10. Which of the following are intensive properties?
 - a) S_{im}
 - b) V_{im}
 - c) $H_{i,m}$
 - d) All of the above
- 11. If ΔG^0 is zero for a reaction, then:

ISLAMIC UNIVERSITY OF SCIENCE & TECHNOLOGY DEPARMENT OF CHEMISTRY

Course Title: Chemical Thermodynamics and Solid State Chemistry Roll No:

(PCH-CC-303)

a) $\Delta H = 0$

b) $\Delta S = 0$

c) K = 0 (equilibrium constant)

d) K = 1

12. Chemical potential is defined as:

a)
$$\left(\frac{\partial G}{\partial n_i}\right)_{T,P,n_i,n_2,\dots,n_n}$$

b)
$$\left(\frac{\partial G}{\partial n_1}\right)_{T,P,n_1,n_2,\dots,n_n}$$

c)
$$\left(\frac{\partial H}{\partial n_i}\right)_{S,P,n_i,\dots,n_i}$$

d) Both a) and c)

13. Which of the following is Gibbs-Duhem Equation:

a)
$$\Sigma \mu_i dn_i = 0$$

b)
$$\sum n_i d\mu_i = 0$$

c)
$$n_1 d\mu_1 + n_2 d\mu_2 = 0$$

d) All of the above

 Chemical potential of an ideal gas in a mixture is always:

a)
$$\mu_i < \mu_i^*$$

b)
$$\mu_i > \mu_i^*$$

c)
$$\mu_i = \mu_i^*$$

d)
$$\mu_i \leq \mu_i^*$$

15. If $\mu_{real} = \mu_{ideal}$

a)
$$\gamma = 1$$

b)
$$\gamma = 0$$

c)
$$\gamma > 1$$

d) None of the above

16. If the observed molar volumes of ideal and real gases are equal, and also if $f=1\,\mathrm{atm}$. $P_{ideal}=4\,atm$

,then pressure in real gas is:

a) 2atm.

- b) 4 atm.
- c) 1 atm.
- d) None
- 17. Gibbs-Duhem-Margules equation can be written as:

a)
$$\frac{\chi_1}{p_1} \frac{dp_1}{d\chi_1} = \frac{\chi_2}{p_2} \frac{dp_2}{d\chi_2}$$

Time: 40mi

b)
$$\frac{p_1}{\chi_1} dp_1 / d\chi_1 = \frac{p_2}{\chi_2} dp_2 / d\chi_2$$

c)
$$\frac{\chi_1}{p_1} d\chi_1 / dp_1 = \frac{\chi_2}{p_2} d\chi_2 / dp_2$$

d) None

18. Konovalov's 1st and 2nd law are:

Max. Marks: 30

a)
$$\chi_1 < y_1; \chi_1 = y_1$$

b)
$$\chi_1 > y_1; \chi_1 = y_1$$

c)
$$\chi_1 = y_1; \chi_1 > y_1$$

d) None

19. The departure or deviation (α) from ideal behavior is defined by:

a)
$$\frac{RT}{P} - V$$

b)
$$\frac{RT}{P} + V$$

c)
$$\frac{-RT}{P} - V$$

d) Non

20. Which of the following is/are correct?

a)
$$f/P = \gamma$$

b)
$$f = P \exp \left[\frac{1}{RT} \int_{0}^{P} V_{m} (real) - V_{m} (ideal) dP \right]$$

c)
$$f = P \exp \left[\int_{0}^{P} \frac{Z - 1}{P} dP \right]$$

d) All of the above